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A theory is given for non-centrosymmetric space groups which permits, for each specially related pair of 
phases of type (¢Pn~ + n~, q~u,a~ + u~R,), the calculation of the expected value of a seminvariant cosine. In order 
to make full use of the symmetry, the mathematical device of the joint probability distribution functions 
has been suitably combined with the space-group algebra. The expected value of (tpn ~ + u~- ¢Pn,R,, +n~a,) is 
given by means of two mathematical approaches. The first uses the Gram-Charlier expansion of the 
characteristic function, the second calculates directly the Fourier transform of the exponential expression 
of the characteristic function. 

Introduction 

In part I of this paper (Giacovazzo, 1977) a theory of 
sign coincidences has been described valid in all the 
centrosymmetric space groups. In order to estimate 
the strength of the various coincidences, the mathem- 
atical device of joint probability distribution functions 
was used. In this section of the paper a general prob- 
abilistic theory of phase coincidences in all non- 
centrosymmetric space groups is described. In our 
calculations atomic positions are the primitive random 
variables while the reciprocal vectors are assumed to 
be fixed. As in the centrosymmetric cases, the method 
requires, for the estimation of non-vanishing cumulants, 
the use of space-group algebra. Appendices A and B 
will help the reader carry out this algebraic analysis. 

The mathematical approach 
The method requires the derivation of a variety of 
conditional probability distributions. We denote by 
P(A 1, A2,..., A,, B1, B2,..., B,) the joint probability dis- 
tribution function of n normalized structure factors; 
Ai and Bi represent the real and imaginary parts, 
respectively, of the ith factor. The characteristic func- 
tion of the distribution is 

C(ul,u2,...,u,,,vx,...,v,,)=exp ~ t~/-- 2 , (1) 
2 v  

where u j, vi, j = 1,..., n, are carrying variables associated 
with Aj and Bj respectively, t is the number of inde- 
pendent atoms in the unit cell, 

1 2rs...w 
Sv=t  ~ 2 u/2 !s! V 

r + s +  . . .  + w = v  r . . . w .  

x (iux)'(iu2) s . ..(iv,) w, 
and 

K r s .  . . W 

"~rs . . .  w = v r / 2  I¢'s/2 .K~(Z.. 
a x 2 0 0 . . . ~ t x 0 2 0 . .  2 

Kr~ . . . .  are the cumulants of the distribution. 

The probability distribution is obtained by cal- 
culating the Fourier transform of (1). After suitable 
change of variables we obtain 

1 
P(R 1,..., R,, q~ a, ..., q~,,) = (27z)zn 

f ] . . . f ] f : ' ~ . . . f : ' ~ e x p  COS X {- i[] /20xRx (¢~-q~l) 

+ . . .  + V 2 e . R .  cos  

× RIR2. . .  R,,QI02... Q,,dQ 1...dQ,d~ka ...d@,, (2) 

where 

r s . . .  W 
s ; = t  Z !s!... , 

r + s + . . . + w = v  r W.  

x (iol cos ~kl)r(i02 c o s  l f l 2 ) s . . . ( i 0 ,  sin ~.)w. 

We will use two different methods to derive the prob- 
ability densities. The first uses a Gram-Charlier  ex- 
pansion of (1), about which the reader will find 
exhaustive information in earlier papers (Giacovazzo, 
1974a, 1976). The second method calculates (2) directly: 
a general account is given in Appendix C. 

Both methods involve a number of integral formulas 
which we list for convenient reference (Watson, 1958): 

'mfl ~- exp ( - iz cos q~) cos mq~d~0 = Jm(z); (3a) 

f lexp(-izcosq~)sinmq~dq~=O; (3b) 

f~Jv(at )exp(-p2t2) tU- ld t  

a2) _ (a/2pFr[(v + ~)/2] 1F1 ; v + 1; ~-~ 
- 2p,r(v+ 1) - , (3c) 
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where F represents the gamma-function and 1F ~ (x; y; z) 
is the generalized hypergeometric function. 

Furthermore, from elementary trigonometry 

~ A,,exp {i(cp+b,,)}= Yexp {i(~o+~)}, (3d) 
n 

where Y and ~ are determined by 

Y= [-Z A~A,, cos (b~-bn)] ~/2, 
V, I1 

Y exp (i¢)= ~ A. exp (ib,). 
/1 

The probability distribution 
P ( R H I ,  RH2, RH1 + !-!2, R n l n p  + H2R q, (DH 1 , (PH2, 

(PHI + H2' q)UlRp + U2Rq) 
when the Gram-Charlier expansion of the characteristic 

function is used 

As in the centrosymmetric space groups, let us study 
the distribution P(EH,, EH~, EH,+n~, Eu,l~p+n~a~). We 
introduce the abbreviations 

E1 =R1 exp 

E 2 = R 2 exp 

E 3 = R 3 exp 

iq~ = A1 + iBx = EH, 

iq) 2 =... = EH 2 ; 
i(P3 = EH~ +i-12; 

E 4 = R~ exp iq~4 = En,np + H ~ .  

From Appendices A and B we obtain 

S'3/t3/2= (i)3 ~ r ~  { e l e 2 e 3  COS (~t 1 "~ I//2 --  l//3) 

+ ~x~2P4 cos [~O, + if2 - $ 4 -  2n(H~T, + H2T~)] }, 

1 4 +  4 S'~/t z -- -~ {--~-6(~ "~-~2 ~3 q"~'~) 

+ y(Q2 + Q2)Q3Q 4 cos [qJ3 - i f 4 -  2rc(H 1Tp + H2Tq)] }. 

(see Appendix B) is a number which depends on the 
actual symmetry class and, for a given class, on the 
actual operators Cp=(Rp, Tp) and Cq=(Rq, Tq). For 
example, in classes 2, m, 222 y is always 1 whatever p 
and q may be. In ram2 y = 2 for symmetry operations 
corresponding to symmetry planes and y = 1 for sym- 
metry operations involving only rotation axes. 

The estimation of (2) may be carried out by repeated 
application of (3a), (3b) and (3c). We obtain 

P(R1,R2,R 3,R4, (P l, (P2, (P3, (P4) 
1 

= - -  - - , X l - - ~ t , 2 - - , x 3 - - R  2) ~z 4 R 1 R E R a R 4  e x p  ( V2 D2 D2 

x{I+~NR1R2R3c°s(tpl- t-(P2-tP3) 

2 
+ ~ RtR2R4 

x cos [¢p I + q02 - q04 - 2rc(H 1Tp + H2Tq)] 

1 D 2 D 2 D 2  + ~ [ + q + ,-1,-2,-3 cos 2(q~l + q~2 - q~3)] 

1 D2D2D2 
"3v -~  aXlJtX2Jx4 

x cos 2[((p ~ + (P2 - - ( P 4 - -  2r~(HiTp + HETq)] 

2 2 2 
+ -~ R1R2RaR4 

x cos [-2cp x + 2cp2 - tp 3 - q~,* - 2rc(H xTp + H2Tq)] 
2 

+ ~ (1 - n2) (1 - R~)R3R4 

x cos [tp a - q~4 - 2rt(H 1Tp + H2Tq)] 

R3R4(R2 + R2_ 2) +-~ ) 
x cos [q~3 - q~4 - 2n(H 1Tp + H2Tq)] + . . . ? ,  

where 
.) 

q=(R 2_ 1)(R 2 - 1 ) ( R  2 - 1 ) + ( R  2 - 1 ) ( R  2 - 1 ) ( R  2 - 1 )  
1 4. 4 4 4 --  ~-(g i + R 2  + R3  + g 4 ) +  g 2 + R22 + R2 + R 2 - 2 -  

Let us calculate the marginal probability density 

P(R1, R2, R3, R4, (Pa, (P4) 

= f ~,~P(R l'R 2'R 3'R4' ¢'°l' q)2' q)3'q)4)dq)ldq)2 

4 { q 
= re--- ~ RxR2R3R4 e x p ( - R ~ - R ~ - ~ R ~ - R ~ )  1 + ~ 

+ 1 R3R412(l_R2)(l_R2) + y(R 2 + RE-2) ]  

x cos [q~3 - ~ 4 -  2rt(H1Tp + H2Tq)]t. 

"X 

(5) 

If we define 

= q)3 --  q)4 --  27z(H aTp + HETq), 

the desired conditional distribution P(~ I R,, RE, R3, R4) 
is obtained from (5) by fixing the values of R ~, RE, R 3, R4 
and renormalizing. By transforming (5) in exponential 
form (Bertaut, 1960a, b; Karle, 1972) we obtain finally 

1 
P(cI)IR1,RE, R3,R4)_ 27tlo(G) exp(Gcos 4~), (6) 

where 

G=N-1R3R4[2(1-RE)(1-RE)+y(R 2 + R 2 - 2 ) ] .  (7) 

There is no problem in calculating from (6) the following 
functions (Hauptman, 1972a): 

( c o s  ~ I G )  - Is(G) (8) 
lo(G)' 

I,(G) I~(G) 
var [-cos ~IG-]=I Glo(G) I2(G) ' (9) 

(sin ~ I G ) = 0 ,  (10) 

var [-sin q~IG] - II(G) 
GIo(G)" 

(11) 

The expected value of cos • is positive if G>0 ,  
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negative if G < 0 :  large values of RH,+H2RH,Rp+H2R q 
strengthen the sign indication. 

Probabilistic considerations on 
(1)e = (Dill +H2 -- (DUlRp +nzRq 

As shown in part I of this paper, given a specially 
related pair of phases (s.r.p.p. from now on) with 
indices U = H i + H 2  and V = H i R p + H 2 R q ,  several 
pairs (H1,H2) may be found each capable of giving an 
estimate of (b=tpu-qgv-2rc(HiTp+H2Tq) .  As the 
value of HiTp+H2Tq,  with fixed Rp and Rq, is a func- 
tion of the actual pair (HbH2), it is useful to obtain, 
instead of (b, an estimate of (be = q)v-(Ov. From (5) we 
derive 

1 
P( (be) - 2nlo(G) exp {G cos [ (be- 2n(n x Tp + UETq)]} , 

(12) 

(cos (be) = cos 2u(H1Tp + H2Tq) Ix(G) I0(G)' (13) 

Ia(G) .1 
var [coS(be]=½+ ½ Gio(G).jcos4rc(H1Tp+HzTq) 

x I2(G) 112(G) 
--2- ~ - - :  ~ COS 4//;(H 1Tp + H2Tq) , 

( s i n  (be) = sin 2rc(HxTp + H2Tq) II(G) 
Io(G)' 

II(G) 1 
v a r [ s i n  (be]=½ - ½ Gio(G)lCOS4rc(H,Tp+H2Tq) 

_.1 

_½12(G) I2(G) 
+½/o2-~ c°s 4n(HITp + H2Tq)" 

The value of (H1Tp+H2Tq) plays a critical role in 
assigning the average and the variance values. In 
particular, we emphasize that the variance of cos (be is 
not always smaller than that of sin (be. For example, if 
H 1 T p + H 2 T q = ( 2 n +  1)/4, it turns out that 

<COS (be> = 0, 

(sin (be>= __+ I~(G)/Io(G), 

var [cos (be] - Ii(G) 
GIo(G)' 

Ii(G) I2(G) 
var [sin (be] = 1 GIo(G) Ig(G)" 

As we see, the variance of the cosine in this case is 
larger than that of the sine. 

We note now that 

I2(G) 
var [cos (be] + var [sin (be] = 1 - i 2 ( ,  

which is a quantity that does not vary with the sym- 
metry operations and depends on the value of IGI alone. 

This suggests that the value of (be should be more 
precisely determined the larger is IGI. In accordance 
with this conclusion let us show that the variance of 
(be does not depend on the actual value of 
2~z(HITp+H2Tq) but on [G[ alone. From 

1 
((b~) - 2rdo(G) 

X 4 "  (beeXp { G c ° s [ ( b e - 2 7 z ( n l T p ' + ' n 2 T q ) ] } d ( b e '  
d -  

we obtain, if G > 0, 

((be) = 2n(H 1Tp + H2Tq); (14a) 

if G<0 ,  

((be) "---- 7~ -~- 2n(H aTp + H2Tq). (14b) 

In view of (14b), when G is negative the variance equals 

1 
( ( b 2 ) - - ( ( b e ) 2  - -  _ _  

2rclo(G) 
t l _ _  

× | "  exp (-fGI cos 
d-- 7I 

- [ re  + 2~z(H aTp + H2Tq)] 2. 

After the change of variable (be = -- 27z(H 1 Tp + H2Tq) = 
~h + 7z, the above expression becomes 

1 
/ *  

I ' :  2 (be)d(be, (15) 2rclo(G) j _ (be exp (IGI cos 

which is the variance expression when G > 0. As is well 
known (Karle & Karle, 1966), (15) leads to 

oO : 'Z Vl n(IGI)] 
var ['(be] = ~ +[Io(IGI)]- l ,  L----n-z--j 

[Ie,+ x(IGI)] 
_4[ io( ia l ) ] -  i o, 

(2n + 1) 2 

The infinite series converges quite rapidly for the values 
of G usually encountered in practice. 

(14) is a fundamental result of the present paper. It 
proves that the condition 

<(be> ~--- ~ (16) 

can exist for symmorphic space groups. The ability to 
obtain such results in these space groups is one of the 
characteristics which distinguishes this theory from 
that of Debaerdemaeker & Woolfson (1972). 

Comparison with a central-limit-theorem approach 

A formal theory of coincidence phase relationships 
has already been given by Debaerdemaeker & Woolfson 
(1972). In our notation, these authors made direct use 
of the probability distributions 

P((Pnl +H2) "~ [2rclo(A 1)] -1 
x exp [-A 1 COS (g0H1-]-(PH2--q)HI+H2)], (17) 
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Pz((Pn,R~, + ii~n~) ~- [2xlo(A 2)] -1 exp { A2 cos [(Pn~ 
+ (pil.-(p.,..+ I I~ . -  2~(H,T. + H~T,)]}, (18) 

where 
A 1 = 2Rii~RH~Rii, + n i l / N ,  

A 2 = 2Ril,Ril~Ril,~,, + i i ,xj l / 'N,  

in order to calculate the probability distribution of 4'e. 
On the assumption that PI((Pii, +il2 I(Pn,,(Pil~,Ril,, 

Ril2, RHI+H2) and P2((PHIRv+II21%I(PH1, (PH2, Ri l , ,  RH2, 
Ril~+ii~,,,) are statistically independent of one an- 
other, Debaerdemaeker & Woolfson (1972) obtained 
the relevant result 

PAl, A2((~De) = + II2)P2((PII, + II2 -- ~e)d(Pilt + 112 

= [2r~Io(A 1)Io(A 2)] -110({A 2 + 2A 2 

+2A~Azcos[CI'e-Zrc(H1Tp+HzTq)]}'2). (19) 

From a formal point of view, (12), (17) and (18) are von 
Mises distributions but (19) is not. In order to compare 
(19) with our (12) we approximate (19) by a suitable 
von Mises distribution. 

As is well known (Stephens, 1963), (17) and (18) 
may be approximated by wrapped normal distribu- 
tions of type 

P((P) = 1 + 2 ~ 0 ̀2 cos r(P 2~, (20) 

where e = exp (-½a2). In (20) 0 .2 assumes the values 0.2 
and 0.z 2 respectively, defined by 

exp ( -  a2/2) = I ~(A a)/Io(A 1), 

exp ( -  a2/2)= I x(A2)/Io(A2). 

In view of the additive property of the wrapped normal 
distributions, the convolution of these two distribu- 
tions is again a wrapped normal distribution with 
parameter a 2 = a 2 + 0.1 which in turn may be approx- 
imated by a von Mises distribution. Then a satis- 
factory approximation of (19) is 

P ' ( ~ ) =  E2rclo(G')] - a 
×exp {G'cos[q~e-2x(HaTp+H2T~)]} (21) 

where G' is the solution of 

II(G') I1(A1) I1(A2) 
Io(G') I0(ax) Io(az)" 

As At and A2 are always positive, G' is always positive, 
whereas our G in (12) may in principle be negative. 
In conclusion, (12) and (19) suggest a different use of 
the information contained in the small Ril, and RH~ 
values. The postulate of statistical independence 
between (17) and (18) assumed in Debaerdemaeker & 
Woolfson's (1972) theory leads to a formula [i.e. (19) 
or (21)] which is not able in symmorphic space groups 
to indicate s.r.p.p.'s for which (tiDe)5/:0. On the other 

hand, in the theory developed here the contribution of 
weak reflexions Ha and H2 is 'opposite' to that of the 
strong reflexions having the same parity. In practice, 
the presence of a large percentage of weak reflexions 
Ha and H 2 should lead to values of (tiDe) and of the 
variance remarkably different from those obtained by 
the use of the strongest reflexions alone. 

The distribution 
P(RHI, RH2, RHI + U2, RHIRp + n2Rq, RHl + KI, RH2 - KI, • • ", 

q)Hl, (DH2, q)Hl + H2, (DHIRV + H2Ra , (PHI + KI, q)H2 - K1 , ' "  ") 
when K j ( R p  - -  Rq) = 0 

The study of this distribution is suggested by the 
algebraic evidence that several pairs of normalized 
structure factors with indices (HI+Ka,  H2-K1) ,  
(Ha + K2, H 2 -  K2), ..., may contribute to defining the 
expectation value of (PH, +n2-  (PH,Rp+II2Rq: the funda- 
mental condition for each Kj vector is Kj(R v -  Rq)= 0. 

We emphasize here only the terms of the probability 
distribution function which are the most significant 
for defining ( ~ e >  and v a r  <(JSe>. The reader will surely 
be able to derive all the distribution terms up to order 
N-a  from the more complete analysis presented in 
paper I. Under these limitations and when n pairs 
(H1 + K j, H 2 -  K j) are involved in the distribution we 
obtain 

P(RH,, "-',(PX2-K,) 

1 
--  ~2n+ 2 RH, +.~Rn,a,, +H2RqRH, + K , . . . R H ~ - K ,  

× exp [ -  R 2, - R 2 2 - . . . -  R22_ K.] 

{ X 1 + ~/[RII,+KjRag_KjRH~+H~ 

x cos  ((PH, + K; + (P.~-  Kj -- (P., + .~)] 
2 

+ ~-~ ~ [ R . , +  KjRH2_ KjRHIRv +ii21% 

X COS ((Pill + Kj "31- (Pil2 - Kj --  (PH1Rp + il2Rq -- Aj)] +... 
1 

+ ~ RH, + i i2Ril, . .  + n2a. Z E 2(1 - R2, + K j)(1 -- R22_ K) 
2 

+7(R2,+Kj-kR~2_K~--2)]COS(~e--Aj)}, (22) 

w h e r e  A j = 21r[(H 1 + Kj)Tp + (H 2 - Kj)T~].  
From (22) we obtain 

P(~e [ RH~, Rilv ...,RH, + K,, Ril 2-K.) 

exp [~. Gj cos (Cbe - A j)] 
- J , (23) 

f ~  ~exp{~ Gj cos  (CrPe- Aj)}dqb e 

where 

Gj = N - '  RH, + a2Rn,ap + n2aq[2(1 -- R 2, + K)(1 -- R22 _ K) 
+ 7(R z, +Kj + R22-Kj - 2)]. 
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On substituting 

G j cos A j = A cos 0 
J 

G~ sin Aj = A sin 0, 
l 

(23) becomes 

P(CI)e] ...) ~ [2~zlo(A)] -1 exp [A cos (~3, 4 -  0)], 

where 

A = [ (  2 GjCOS Aj) z -}-(~ Gjs in  Aj)2] 1/2, 
J 

(24) 

(25) 

Gj sin Aj 

tan 0 = z.., 3~ Gj cos A j" (26) 
3 

(24) has a maximum when 45e = 0, and the larger the 
value of A, the higher this maximum will be. The 
variance of ~e for a fixed set of Gj factors is given by 

x 2 _ 1 ~  12L?)  
var  ICe] = T -Jr" [Io(A)] 1, n 

0 0  

-4[Io(A)]-'}- ' ,  I2.+ I(A) (27) 
o. (2n + 1) 2. 

We note explicitly that (24) is formally different from 
(12). The value of A in (24), in fact, is assumed always 
positive whereas G in (12) may be positive or negative. 
The two equations nevertheless, give equivalent results 
when n = 1. In this case, in fact, 0 = 2/I:(HxT p + HETq) if 
G > 0 ;  O=n+2n(H~Tp+HzTq) if G<0.  (26) and (27) 
are basic results of the present paper. 

Cosine and sine expected values 

From (24) we obtain the expected values of cos 4~e and 
sin ~e for a fixed value of A: 

h(A) 
< cos ~e > = COS 0, 

Io(A) 

(sin (be) = II(A) . sm 0. 

The variance values are: 

var [c°s (Pe] = C +COS 20) [ 1 2  ~ 3  I~(A)-] 

var  sinOe  = (1 c°s 0)[1 • - -  - -  

2 

II(A) 
- -  cos 20, 
AIo(A) 

I~(A)] 
Ig(A)_] 

II(A) 
+ ~ cos 20. 

If A is large enough the expected values of cos Cbe and 
sin (be are very close to cos 0 and sin 0 respectively. As 
in these conditions small variance values occur, 0 
should be a reliable estimate of 4~e. 

A comparison with the cosine seminvariant method 

Formulae for linear combinations of two phases 
which are structure seminvariants have been derived 
in some space groups by Hauptman (1972b) by means 
of an algebraic approach. The derivation was presented 
in the space group P2 and useful formulae were fixed 
in P21 and P2~212~. In this paragraph we show that 
our theory is able to generalize Hauptman's  results 
and gives them a new probabilistic interpretation. 

In order to facilitate comparison with Hauptman's  
formulation, let us assume, without any loss of gener- 
ality, that En, +m and EnxR~+u2K~ are centrosymmetric 
reflexions. From (4) we derive the marginal conditional 
density 

P(Rm +K,, .. " ,RH2-K.  I Eu, +1t2, EIt,Rp + H2Rq) 

~--22"Ru,+K,...Rn2_K. exp (-- 2 2 RH1 +K, - - . .  - RH2-K. )  

x {1 + E Ga{- 1)2[(n' +u,,x, +m2-K,lrd} 
g 

from which the mean value of the quantity 

( 1 - Rfi, +Kj) (1 - R22_  K)  ( - -  1 )2urn + Kj)Tp + (U2- KflTq] 

is derived" 

N 
Enl +n2Emnp, n2nq _~_ ((1 _ R 2  +K) (1 2 

X(--  1)2[(HI+Kj)TP+(lt2-Kj)Tq]). (28) 

In order to describe a practical application of (28) let 
us consider in space group P212121 the case in which 
Rp=I, 

i°il R q  ~ 

0 

Because of trivial algebraic considerations, the parities 
of the reciprocal vectors involved in (28) are so fixed: 

(a) H l + H 2 - ( h , , k l , 0 ) ,  Hl+H2Rq=(h2,k2,0),  

where h~_+h2 and k~ +k2 are even. The condition 
l =  0 is fixed by the chosen centrosymmetric nature of 
the s.r.p.p. (En, +m, Em +mRq); 

(b) H1 + K j  --- ( h i  + h 2  
2 ' 

, %  

H E _ K  j = (hi--hE 
2 ' 

N 

Then (28) reduces to 

ghlklOghEk20 

kx + k2 I) 
2 ' ' 

k l - k 2  I) 
2 ' " 

N 
'~' - -  (kl +k2)/21[ -- 1) 2 ( ( -  1)l+(hl +h2)/2(lE(< +h2)/2 2 

X ([E(hl_h2)/2 (kl-k2)/2 l [ 2  1))1, 

which coincides with (4.5) in Hauptman's  (1972b) 
paper. One can show that all Hauptman's  formulae 
may be derived in a similar way. 

AC 33A-2 
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Further remarks about Hauptman's and our methods 
could be useful. (1) Hauptman's method, as well as 
our approach, is able to take full advantage of the 
space-group symmetry, but needs to know the algebraic 
form of the structure factor. The derivation of the 
phase information in any space group thus requires 
an ad hoc mathematical treatment. Our approach 
however involves the symmetry operators alone so that 
the expected values of the seminvariant phases are 
easily derivable whatever the space group. (2) Haupt- 
man's method obtains the value of (cos (ibe) by 
averaging the quantity (in our notation) 

2(R2,+Kj--1)(R22_Kj--1)cosAj. (29) 
J 

Our probabilistic approach advises us to average the 
quantity 

Gj cos Aj 
J 

of which (29) is a part. In fact, the mean value of the 
term 

2 ~'(R2, +K+ R2'2 - K -  2) cOs Aj 

does not vanish and its estimate may give a further 
contribution to knowledge of cos 4'e. (3) Hauptman's 
formulae are formally able to give the exact value of 
the seminvariant cosines when the structure consists 
of N identical point atoms and when no rational 
dependence of atomic coordinates occurs. A funda- 
mental postulate is that the vector K ranges uni- 
formly throughout reciprocal space on condition that 
K(Rv-Rq)=0.  However, all the computed averages 
are of necessity only estimates of the true averages and 
are based on the finite number of available diffraction 
data. Our formulation, on the other hand, is able to 
take account of the sampling effect and to provide 
expected values of the seminvariant cosines as well as 
the variance values. 

2 + ~ RHIRH~Ra,ap +n~aq 
F 

x cos (~oa~ + q~n~ - q~n~a,, + a~a~ - A) 

2 + ~ [ ( 1 - ~ ) +  ~-~-(R21 + g2n~)]gn,+n~Rn,a,,+n2a~ 

× COS (q)Hl +H2 --  q)it,Rp +H211q --  A)} ,  (30) 

where A = cos 2rc(H1Tp + H2Tq). 
P(CI)e I RHI,...,Ra,a,+H~a~) is found by (30) by fixing 

RH,, ..., Rn,a,+H~a,, integrating with respect to On,, 
q~n~ from 0 to 2re and multiplying the result by a suitable 
normalizing constant. Thus, 

P(~e IRa,,..., Rn~a~ + a2a~) 

1 
~-- 2rcL Io(A) exp [2B cos (~e -A) ] ,  (31) 

where 

A = RH,RH~[R2~+H~+RH,R,,+H2a~ 

+ 2RH, + B~RH,I~,, +n~a~ COS (q~e -- A)] 1/2, 

o_- 1[/1_,, 

f 2Ra,RH~Rn, + .~) 

× Im \f 2RH'R"'Rnla'I '/N +.2a~) Im(2B)" 

Im is the modified Bessel function of order m. 
In the same way, the conditional expected value of 

cos 4~e is found from (30): 

+oo . /,2Rn~Rn2RH,+n2\ /'2RH,RH2Rn,a +n2a \ 
( C O S ~ e I / H , ,  eH,Rp  H2Rq)'~'COSA - ~ m l m ~ ~ - - - ) l m ~  / N  p q) 'm+l(RB) " 

_)imlm[.~ \ ~ +Ha Im 
(32) 

The probabilistic theory of the seminvariant cosines 
when the exponential form of the characteristic function 

is used 
Appendix C gives 

P(Rn,, Rn2, Rn~ + n~, Rm a,, + H2Rq, (PHi, " " ", (DH I Rp + H2Rq) 

1 
TO-- ~ RH1.. .RH1Rp +H2R q 

2 x exp { - ( R  2, + ... + Rn,ap +n2aq) 

2 
+ ~ RH,RH2RH1 +n2 COS ((PHI -~- (PH2 --  (PHI +H2) 

We now calculate the probability density function 
when several pairs of normalized structure factors with 
indices (Hi+K1,  H2-K1) ,  (Hi+K2,  H2-K2) ,  ... 
contribute to defining the expectation value of ¢'e. Of 
course, Kj(Rp-Rq) must be zero for each Kj vector. If 
n pairs of type (H1 +Kj, H 2 - K j )  contribute to Ce, we 
obtain after lengthy calculations, 

P( ~e I RH,,Ra2,Rn, + a,,Rn, + a2, ...,Rtj, Rv) 

,..1_ 2roE { f i  I°(As) exp [2B c°s (CI)e-fl)]} ' 1 S  (33) 

where 
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U=H1  -I-H2, V=HxRpq--H2Rq, 

2 
Aj = ~ - ~  R u t  +KjRHz_Kj[R2 q - R 2 

+ 2RuRv cos (Re-- A j)] 1/2, 

B= BjcosAj + B ssinAj , 
l j  

1[ )1 Bj= -~ ( 1 - ? ) +  (R2,+Kj+R2:-K s RvRv, 

~ Bj sin Aj 
l j  

t a n f l =  a 
Bj cos A i 

1j 

A j= 2rcE(H, + Kj)T v + ( H 2 -  K;)Tq], 

+co (2Rn, +K,Rn2_K,Rv., ~ 
L =  ~ I,,, 

-~om,~ . . . . .  O ] / N  ,] 

f2Ru, + K~Rn2 - K,Rv) Xlm~, ~ , ... 

x I o (2RHI + K~N2-K"Rts) I v (2Rnt + K"Rn2-K"Rv)I./ N 

x Im +,, +... + p(2B) COS [mA 1 + v,4 2 +... 
+ e A . - ( m  + v + . . .  + e)fl] • 

From (33) the conditional expected value of c o s  (~e is 

} "" 2 Im, v ..... o cos fl, (34) (cos 45e1... ) - ~ - -oom . . . . . . .  p 

where 

Im v ., p = Im ( 2Rut + KtRu2-K'Rv'~ 
. . . .  ,, ]//N /] 

{2R., +K~RH~-K,Rv'~ 
Mime" - ~  / "'" 

x IP CRn'+K~--~N~-K"Rv) Io (2Rn'+K~N 2-K"Rv) 

x Ira+v+ ... +o+ 1(2B) cos [mA 1 +... 
+ oA, - (m + v +... + e)fl]- 

(33) and (34) are the major results of this paper. 
As further details would make this paper dull 

reading, the practical use of (33) and (34) and their 
connexions with (24) and (26) will be described in a 
later paper. 

C o n c l u d i n g  r e m a r k s  

A theory has been described which is capable of 
deriving in each space group the expected value of the 
seminvariant cosine cos(q~nt+n2-cPnlap+n2aq) given 
one or more pairs of magnitudes (Rn, +Kj, Rn2-Ks), on 
condition that Ks(R v -  Rq)= 0. The final formulae are 

derived by means of two different techniques: the first 
uses a Gram-Charlier expansion of the characteristic 
function, the second uses directly its exponential func- 
tion. The mathematical approach seems quite general: 
its application in the automatic procedures for phase 
determination is made easier by the fact that the 
method requires knowledge of only the symmetry 
operators. 

Coincidence information may be used in several 
ways to improve and speed up the multisolution pro- 
cedures of solving crystal structures. Debaerdemaeker 
& Woolfson (1972), Hauptman (1972c) and Viterbo 
(1974) suggested their usefulness in enlarging the 
starting set or in reducing the number of ambiguities 
which must be introduced at the beginning of the 
phasing procedure. However, no one seems to have 
used coincidence information to select the correct 
phase set from all the sets produced by a multisolution 
procedure. This use is supported by the evidence that 
the theory described here is able to define in the 
symmorphic space groups the s.r.p.p.'s for which 

(#H1 + H2 ~ (PHIR v + H2Rq ' ~  7~. 

So, new figures of merit are suggested by this theory 
which, together with that described by De Titta, 
Edmonds, Lang & Hauptman (1975)and Giacovazzo 
(1976), can help to select the correct phase set in the 
multisolution procedures. 

This work was supported by the Consiglio Nazionale 
delle Ricerche (grant No. 75.1066.05.115.4593). 

APPENDIX A 

Let the symmetry number of the actual space group 
be denoted by m, and ( and r/are the real and imaginary 
parts of the trigonometric structure factor 4: then 

m 

~(h) = ~(h)+ ir/(h) = ~ exp 2zcih(Rpx + Tv). 
i p  

In particular 

((h) = ~ cos 2rch(Rpx + Tp), 
l p  

r/(h) = ~, sin 2rch(Rvx + Tp). 
l p  

With a view to deriving the multivariate standardized 
cumulants, the linearization theory (Bertaut, 1959) 
will be used. For the sake of simplicity, we consider 
here only the reciprocal vectors H1, HE, Hi-I-H2, 
H 1 R p + H 2 R  q whose statistical weights equal unity. 
Special vector covariances, in fact, would require 
further, additional, algebraic considerations [see Gia- 
covazzo (1974b, c) for cumulants of order three] which 
would make this paper too dull reading. 

As is well known the only non-vanishing moments 
in $3 which involve the reciprocal vectors H1, HE, H3 = 
H 1 + HE, are 

AC 33A-2" 
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(((H1)((H2)((H3)), ( ( (H 1)~/(H2)~/(H3)), 
(A.1) 

(r/(H1)r/(H2)((H3)), (q(HI)((H2)r/(H3)). 

Their estimation leads to the probability function 

P(q)n, +n2) = [2rclo(G)] -1 
x exp [G cos (cp,, + q~Hz - -  (PHI + H2) ] "  (A. 2) 

When the H1, H2, H, ,=H1Rp+H2Rq vectors are con- 
sidered, a larger number of moments must be tested. 
For example, if Rp = I, Rq = Rs, in addition to those in 
(A. 1), the moments 

(((H1)((H2)q(H4)), (q(H1)q(H2)r/(H,)>, 

(r/(H~)((H2)((H4)), (((H~)r/(H2)((H4)), (A.3) 

should not vanish. The mathematical device of linear- 
ization theory offers a useful tool for estimating the 
moments. For example, the quantity 

(((Hx)((HE)((H4)) 

=½(1 p,q,, ~ {c°s2x[(HIRp+H2Rq)x+H1Tp+HzTq] 

+c°s 27r[(H1Rp-HzRq)X + HlTp-H2Tq]} \ 
x cos 27r[(H ~ R, + H2R,R,)x + H 1T,, + HER~T,,]), 

t 

does not vanish when Rp = R,, Rq = R,R,. Then 

m 
(((H1)((H2)((H1 + HzR~)) = -~cos 2xHzT~. 

In general one obtains the probability function 

P(q~H,Rp +H2Rq) = [2rclo(G)] -1 

x exp [G cos (q~H, + qht2-- q~nta, +n~a~-- A)], (A.4) 

where A = 2x(H iTp + H2Tq). (A. 4) generalizes (A. 2). 

APPENDIX B 

The expression of S',/t 2 in (2) derives from an approx- 
imate estimate of 

!,f ,ooooooo 
= t [ 4! 0 4 c o s * ~ l + . . .  

~'00000004 + 4! 0, 4 sin* ~94 

/]'20002000 
+ 2!2! 02 C0S2 Sx sin2 Sx + " "  

'~00020002 
+ 2121 044 C0S2 I//4- sin 2 ~4 

2 
"{- 2~-1-17~ 0 020304 COS2 I//1 COS ~3 COS I//` 

2 
+ ° o o3o, cos 

"Jr- '~'~1-1-1T.~0 020304-sin2 I//1 COS I//3 COS I]/4 

'~00000211 + 2! 1 ! 1 ! 020304 sin2 I//2 sin 11/3 sin ~4 

200002011 020304 sin 2 ffl sin ~'3 sin ~4 
+ 2!1!1! 

/~00110200 
+ 1 ! 1 !2! 0220304 sin2 [[12 COS [/13 COS [//4 

+ 2~°i°~f~ x 020304 cos 2 ~01 sin if3 sin if, 

+ o    ,cos2 sin 

(B.1) 
The approximation is because in accordance with the 
algebraic results described in the Appendices of part I 
of this paper, some cumulants in (B. 1) assume values 
which vary with the space-group symmetry. For- 
tunately the modifications introduced by the symmetry 
for the monovariate and bivariate standardized cum- 
ulants in (B.1) turn into weak perturbations of 
cos (q~n,+n2-q~n,ap+n2Rq). Therefore, we will not est- 
imate them here. We limit ourselves to showing how 
the values of the most important cumulants in S~,, the 
trivariate cumulants, vary with the space-group sym- 
metry. 

Without loss of generality, let us consider, when 
Rp=l ,  Rq=Rs, the first of the trivariate cumulants 
which appear in (B. 1). As 

'~20110000 = m2011 oooo/(m2/4), 
we derive first the expression 

m2ol lO000 = (~2(H 1)~(H 1 + Hz)~(H1 + H2Rs))  

=¼ Z cos2~Hl[(Rp+Rq)x+T,+Tq] 
\11 p.q 

+ cos 2r~[H x(Rp - Rq)x + T p -  Tq]~ 
) 

x cos 2~[H I(R,,× + Rvx + T, + Tv) 
[1 n,v 

+ lt2(R,x + li~R~x + T,, + R~T~)] 

+ cos 2rc[H 1 (R,,x - livx + T,, - T~). 

+ .sa x + T -"sT 'l 
3 /  

=(L1 +L2) (L3 +L, ) .  

Whereas the products LtL3, L2L3, LaL4 always 
vanish, LzL, , is non-zero when 

Ha [ (Rp-  Rq)x + T p -  Tq] = H a [ ( R , -  R~)x + T . -  T~], 

( R , -  R~R0x + T , -  R~T~- 0 (mod. 1). (B.2) 

The conditions 

(a) R~Rv = R., Rp = R., Rq = R~, 

(b) R.R~=R.,  Rp=Rv, Rq=R.,  

satisfy (B. 2). As RsT~ = T . - T ,  when R,R~=R,,  then 
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m 
m2ol loo0o = ~- COS 2zrH2Ts, 

1 
220110000 ~--" - -  COS 27rH2Ts. (B. 3) 

m 
While in the symmetry classes 1, 2, m, 222 the trivariate 
cumulants equal (1/m)cos2rcH2T~, in classes with 
higher symmetry that is not always true. In ram2, for 
example, in which the rotation components of the 
symmetry operations are 

li°il i °il RI= ; Rz= ; 
0 0 

li°il Ii°il Ra= ; R4= , 
0 0 

the standardized trivariate cumulants equal 
cos2rcH2Ts/m when s = 4 ;  2cos2rcHzTs/m when s =  
2,3. The additional contribution in the cases s=2,3  
derives from the combinations 

(1) Rp=R1, Rq=R2, Rn=R3, R~=R4, 

(2) Rp=R1, Rq=R2, R,,=R4, R~=R3, 

(3) Rp---R2, Rq--R1, Rn=R3, Rv=R4, 
(4) Rp=R2, Rq=R1, R,,=R4, Rv=R3 • 

APPENDIX C 

Let 

R I = R n , ,  R2=Rn: ,  R3=Rn3, R4=Rn~np+n2Rq, 

(Pl =(PIl l ,  " . . . . . . . . . . . . . . .  , (/24=q)nlRp+H2Rq" 

If the exponential form of the characteristic function 
is used, 

Rx...R4 
P(Rx,R2,R3,R4,q)I,...,q~4) ~- (2z08 

× .. 020304d01 .d04 

x exp {-i[01R1 cos (Ox-q~l)+ ... 

+ 04R4 cos ( 0 4 -  q~4)] -¼(0 z +--- + 02) 

i 
4] /N [010203 COS (01 -1- 02 - -03 )  

-It- Q 10204 COS(01 -'~- 02 -- 0 4 - -  A) ]  

I 
+ ~ ~o3o4(o, ~ + o~) 

x cos (03 - - 0 4 -  A)}dO 1...d04. (C. 1) 

In view of (3d) none of the 0 integrations presents any 
difficulty. In fact, in order to carry out the Oj integra- 
tion, one collects the terms involving 0~ in the 

exponent of(C. 1) and obtains an expression of the type 

Yi cos (~i- 0A, 
where Y~ and ~j are independent of 0j. The integra- 
tion is then easily done by means of (3a) and (3b). 

Some remarks should be made concerning the 01 
and 02 integrations. If the 01 and 02 integrations have 
already been carried out, one needs to calculate ex- 
pressions of type 

f ~ 0 j e x p [  1 2 )' 2 R - -40 j  -- 4--N0j 3R4cos(q)3--q~4 - A )  

x 2Z~Jo(OjAy) [ d0j, (C. 2) 

where Aj is a factor independent of 0j. The direct 
integration of (C. 2) is feasible but leads to a compli- 
cated expression of the probability density function. 
We prefer to introduce into (C. 2) the Taylor expansion 

exp - ~--~0jR3 4cos ( tp3-q)4-A)  

- ~ 1 - ~ - ~  y 02R3R4cos(tp3-q)4-d). (C.3) 

In view of (C. 3), (C. 2) then becomes 

4rc exp ( - A2) I 1 -  4~  R 3R4(1- R2) cos (q93 - q)4 - A) 1, 

which, by means of (C. 3), may be written 

47z exp [-A~--4-~Y R3R4(1-R 2) COS ((./23--(/94 - A ) I  

This procedure leads to the probability density func- 
tion (30). 
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